skip to main content


Search for: All records

Creators/Authors contains: "Lekic, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found only up to degree ∼10 at longer periods (T > 150 s) and up to degree ∼8 for overtones. Only 2ζ azimuthal variations in phase velocity of fundamental-mode Rayleigh waves were required by the reference data set; maps of 2ζ azimuthal variations are highly consistent between catalogues ( R = 0.6–0.8). Reference data with uncertainties are useful for improving existing measurement techniques, validating models of interior structure, calculating teleseismic data corrections in local or multiscale investigations and developing a 3-D reference Earth model.

     
    more » « less
  2. Abstract

    Temperature distribution at depth is of key importance for characterizing the crust, defining its mechanical behavior and deformation. Temperature can be retrieved by heat flow measurements in boreholes that are sparse, shallow, and have limited reliability, especially in active and recently active areas. Laboratory data and thermodynamic modeling demonstrate that temperature exerts a strong control on the seismic properties of rocks, supporting the hypothesis that seismic data can be used to constrain the crustal thermal structure. We use Rayleigh wave dispersion curves and receiver functions, jointly inverted with a transdimensional Monte Carlo Markov Chain algorithm, to retrieve theVSandVP/VSwithin the crust in the Italian peninsula. The high values (>1.9) ofVP/VSsuggest the presence of filled‐fluid cracks in the middle and lower crust. Intracrustal discontinuities associated with large values ofVP/VSare interpreted as theαβquartz transition and used to estimate geothermal gradients. These are in agreement with the temperatures inferred from shear wave velocities and exhibit a behavior consistent with the known tectonic and geodynamic setting of the Italian peninsula. We argue that such methods, based on seismological observables, provide a viable alternative to heat flow measurements for inferring crustal thermal structure.

     
    more » « less